Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Opt Express ; 32(6): 10329-10347, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571248

RESUMO

Optical coherence tomography (OCT) and its extension OCT angiography (OCTA) have become essential clinical imaging modalities due to their ability to provide depth-resolved angiographic and tissue structural information non-invasively and at high resolution. Within a field of view, the anatomic detail available is sufficient to identify several structural and vascular pathologies that are clinically relevant for multiple prevalent blinding diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and vein occlusions. The main limitation in contemporary OCT devices is that this field of view is limited due to a fundamental trade-off between system resolution/sensitivity, sampling density, and imaging window dimensions. Here, we describe a swept-source OCT device that can capture up to a 12 × 23-mm field of view in a single shot and show that it can identify conventional pathologic features such as non-perfusion areas outside of conventional fields of view. We also show that our approach maintains sensitivity sufficient to visualize novel features, including choriocapillaris morphology beneath the macula and macrophage-like cells at the inner limiting membrane, both of which may have implications for disease.


Assuntos
Retinopatia Diabética , Vasos Retinianos , Humanos , Vasos Retinianos/patologia , Angiofluoresceinografia , Tomografia de Coerência Óptica/métodos , Retina
2.
Opt Lett ; 49(5): 1201-1204, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426973

RESUMO

High-quality swept-source optical coherence tomography (SS-OCT) requires accurate k-sampling, which is equally vital for optical coherence tomography angiography (OCTA). Most SS-OCT systems are equipped with hardware-driven k-sampling. However, this conventional approach raises concerns over system cost, optical alignment, imaging depth, and stability in the clocking circuit. This work introduces an optimized numerical k-sampling method to replace the additional k-clock hardware. Using this method, we can realize high axial resolution (4.9-µm full-width-half-maximum, in air) and low roll-off (2.3 dB loss) over a 4-mm imaging depth. The high axial resolution and sensitivity achieved by this simple numerical method can reveal anatomic and microvascular structures with structural OCT and OCTA in both macular and deeper tissues, including the lamina cribrosa, suggesting its usefulness in imaging retinopathy and optic neuropathy.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos
3.
Biomed Opt Express ; 15(2): 1059-1073, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404311

RESUMO

A real-time line-field optical coherence tomography (LF-OCT) system is demonstrated with image acquisition rates of up to 5000 B-frames or 2.5 million A-lines per second for 500 A-lines per B-frame. The system uses a high-speed low-cost camera to achieve continuous data transfer rates required for real-time imaging, allowing the evaluation of future applications in clinical or intraoperative environments. The light source is an 840 nm super-luminescent diode. Leveraging parallel computing with GPU and high speed CoaXPress data transfer interface, we were able to acquire, process, and display OCT data with low latency. The studied system uses anamorphic beam shaping in the detector arm, optimizing the field of view and sensitivity for imaging biological tissue at cellular resolution. The lateral and axial resolution measured in air were 1.7 µm and 6.3 µm, respectively. Experimental results demonstrate real-time inspection of the trabecular meshwork and Schlemm's canal on ex vivo corneoscleral wedges and real-time imaging of endothelial cells of human subjects in vivo.

4.
Adv Mater ; 36(15): e2310306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194699

RESUMO

The enzymatic activities of Furin, Transmembrane serine proteinase 2 (TMPRSS2), Cathepsin L (CTSL), and Angiotensin-converting enzyme 2 (ACE2) receptor binding are necessary for the entry of coronaviruses into host cells. Precise inhibition of these key proteases in ACE2+ lung cells during a viral infection cycle shall prevent viral Spike (S) protein activation and its fusion with a host cell membrane, consequently averting virus entry to the cells. In this study, dual-drug-combined (TMPRSS2 inhibitor Camostat and CTSL inhibitor E-64d) nanocarriers (NCs) are constructed conjugated with an anti-human ACE2 (hACE2) antibody and employ Red Blood Cell (RBC)-hitchhiking, termed "Nanoengineered RBCs," for targeting lung cells. The significant therapeutic efficacy of the dual-drug-loaded nanoengineered RBCs in pseudovirus-infected K18-hACE2 transgenic mice is reported. Notably, the modular nanoengineered RBCs (anti-receptor antibody+NCs+RBCs) precisely target key proteases of host cells in the lungs to block the entry of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), regardless of virus variations. These findings are anticipated to benefit the development of a series of novel and safe host-cell-protecting antiviral therapies.


Assuntos
COVID-19 , Catepsina L , SARS-CoV-2 , Inibidores de Serino Proteinase , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Eritrócitos , Pulmão/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Inibidores de Serino Proteinase/farmacologia , Inibidores de Serino Proteinase/uso terapêutico
5.
Ophthalmol Retina ; 8(2): 108-115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37673397

RESUMO

PURPOSE: Microaneurysms (MAs) have distinct, oval-shaped, hyperreflective walls on structural OCT, and inconsistent flow signal in the lumen with OCT angiography (OCTA). Their relationship to regional macular edema in diabetic retinopathy (DR) has not been quantitatively explored. DESIGN: Retrospective, cross-sectional study. PARTICIPANTS: A total of 99 participants, including 23 with mild, nonproliferative DR (NPDR), 25 with moderate NPDR, 34 with severe NPDR, and 17 with proliferative DR. METHODS: We obtained 3 × 3-mm scans with a commercial device (Solix, Visionix/Optovue) in 99 patients with DR. Trained graders manually identified MAs and their location relative to the anatomic layers from cross-sectional OCT. Microaneurysms were first classified as perfused if flow signal was present in the OCTA channel. Then, perfused MAs were further classified into fully and partially perfused MAs based on the flow characteristics in en face OCTA. The presence of retinal fluid based on OCT near MAs was compared between perfused and nonperfused types. We also compared OCT-based MA detection to fundus photography (FP)- and fluorescein angiography (FA)-based detection. MAIN OUTCOME MEASURES: OCT-identified MAs can be classified according to colocalized OCTA flow signal into fully perfused, partially perfused, and nonperfused types. Fully perfused MAs may be more likely to be associated with diabetic macular edema (DME) than those without flow. RESULTS: We identified 308 MAs (166 fully perfused, 88 partially perfused, 54 nonperfused) in 42 eyes using OCT and OCTA. Nearly half of the MAs identified in this study straddle the inner nuclear layer and outer plexiform layer. Compared with partially perfused and nonperfused MAs, fully perfused MAs were more likely to be associated with local retinal fluid. The associated fluid volumes were larger with fully perfused MAs compared with other types. OCT/OCTA detected all MAs found on FP. Although not all MAs seen with FA were identified with OCT, some MAs seen with OCT were not visible with FA or FP. CONCLUSIONS: OCT-identified MAs with colocalized flow on OCTA are more likely to be associated with DME than those without flow. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Retinopatia Diabética , Edema Macular , Microaneurisma , Humanos , Retinopatia Diabética/complicações , Vasos Retinianos , Microaneurisma/diagnóstico , Microaneurisma/etiologia , Estudos Transversais , Edema Macular/etiologia , Edema Macular/complicações , Estudos Retrospectivos , Tomografia de Coerência Óptica , Angiofluoresceinografia , Retina
6.
IEEE Trans Biomed Eng ; 71(1): 14-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37405891

RESUMO

OBJECTIVE: Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map (BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers' decision-making. METHODS: A data set including 456 macular scans were graded as non-referable or referable DR based on current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. The BAM generation framework was designed by combing two U-shaped generators to provide meaningful interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable by the classifier from non-referable scans. RESULTS: The generated BAMs highlighted known pathologic features including nonperfusion area and retinal fluid. CONCLUSION/SIGNIFICANCE: A fully interpretable classifier based on these highlights could help clinicians better utilize and verify automated DR diagnosis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Retina/diagnóstico por imagem , Algoritmos , Angiografia , Tomografia de Coerência Óptica/métodos , Biomarcadores
7.
Ophthalmol Sci ; 4(2): 100382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37868804

RESUMO

Purpose: To assess whether the combination of en face OCT and OCT angiography (OCTA) can capture observable, but subtle, structural changes that precede clinically evident retinal neovascularization (RNV) in eyes with diabetic retinopathy (DR). Design: Retrospective, longitudinal study. Participants: Patients with DR that had at least 2 visits. Methods: We obtained wide-field OCTA scans of 1 eye from each participant and generated en face OCT, en face OCTA, and cross-sectional OCTA. We identified eyes with RNV sprouts, defined as epiretinal hyperreflective materials on en face OCT with flow signals breaching the internal limiting membrane on the cross-sectional OCTA without recognizable RNV on en face OCTA and RNV fronds, defined as recognizable abnormal vascular structures on the en face OCTA. We examined the corresponding location from follow-up or previous visits for the presence or progression of the RNV. Main Outcome Measures: The characteristics and longitudinal observation of early signs of RNV. Results: From 71 eyes, we identified RNV in 20 eyes with the combination of OCT and OCTA, of which 13 (65%) were photographically graded as proliferative DR, 6 (30%) severe nonproliferative DR, and 1 (5%) moderate nonproliferative diabetic retinopathy. From these eyes, we identified 38 RNV sprouts and 26 RNV fronds at the baseline. Thirty-four RNVs (53%) originated from veins, 24 (38%) were from intraretinal microabnormalities, and 6 (9%) were from a nondilated capillary bed. At the final visit, 53 RNV sprouts and 30 RNV fronds were detected. Ten eyes (50%) showed progression, defined as having a new RNV lesion or the development of an RNV frond from an RNV sprout. Four (11%) RNV sprouts developed into RNV fronds with a mean interval of 7.0 months. Nineteen new RNV sprouts developed during the follow-up, whereas no new RNV frond was observed outside an identified RNV sprout. The eyes with progression were of younger age (P = 0.014) and tended to be treatment naive (P = 0.07) compared with eyes without progression. Conclusions: Longitudinal observation demonstrated that a combination of en face OCT and cross-sectional OCTA can identify an earlier form of RNV before it can be recognized on en face OCTA. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

8.
Biomed Opt Express ; 14(11): 5682-5695, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021127

RESUMO

In this study, we present an optical coherence tomographic angiography (OCTA) prototype using a 500 kHz high-speed swept-source laser. This system can generate a 75-degree field of view with a 10.4 µm lateral resolution with a single acquisition. With this prototype we acquired detailed, wide-field, and plexus-specific images throughout the retina and choroid in eyes with diabetic retinopathy, detecting early retinal neovascularization and locating pathology within specific retinal slabs. Our device could also visualize choroidal flow and identify signs of key biomarkers in diabetic retinopathy.

9.
ArXiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873013

RESUMO

Purpose: Microaneurysms (MAs) have distinct, oval-shaped, hyperreflective walls on structural OCT, and inconsistent flow signal in the lumen with OCT angiography (OCTA). Their relationship to regional macular edema in diabetic retinopathy (DR) has not been quantitatively explored. Design: Retrospective, cross-sectional study. Participants: A total of 99 participants, including 23 with mild, nonproliferative DR (NPDR), 25 with moderate NPDR, 34 with severe NPDR, and 17 with proliferative DR. Methods: We obtained 3 × 3-mm scans with a commercial device (Solix, Visionix/Optovue) in 99 patients with DR. Trained graders manually identified MAs and their location relative to the anatomic layers from cross-sectional OCT. Microaneurysms were first classified as perfused if flow signal was present in the OCTA channel. Then, perfused MAs were further classified into fully and partially perfused MAs based on the flow characteristics in en face OCTA. The presence of retinal fluid based on OCT near MAs was compared between perfused and nonperfused types. We also compared OCT-based MA detection to fundus photography (FP)- and fluorescein angiography (FA)-based detection. Main Outcome Measures: OCT-identified MAs can be classified according to colocalized OCTA flow signal into fully perfused, partially perfused, and nonperfused types. Fully perfused MAs may be more likely to be associated with diabetic macular edema (DME) than those without flow. Results: We identified 308 MAs (166 fully perfused, 88 partially perfused, 54 nonperfused) in 42 eyes using OCT and OCTA. Nearly half of the MAs identified in this study straddle the inner nuclear layer and outer plexiform layer. Compared with partially perfused and nonperfused MAs, fully perfused MAs were more likely to be associated with local retinal fluid. The associated fluid volumes were larger with fully perfused MAs compared with other types. OCT/OCTA detected all MAs found on FP. Although not all MAs seen with FA were identified with OCT, some MAs seen with OCT were not visible with FA or FP. Conclusions: OCT-identified MAs with colocalized flow on OCTA are more likely to be associated with DME than those without flow. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article. Ophthalmology Retina 2023;■:1-8 © 2023 by the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

10.
Biomed Opt Express ; 14(9): 4542-4566, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791289

RESUMO

Optical coherence tomography angiography (OCTA) is a high-resolution, depth-resolved imaging modality with important applications in ophthalmic practice. An extension of structural OCT, OCTA enables non-invasive, high-contrast imaging of retinal and choroidal vasculature that are amenable to quantification. As such, OCTA offers the capability to identify and characterize biomarkers important for clinical practice and therapeutic research. Here, we review new methods for analyzing biomarkers and discuss new insights provided by OCTA.

11.
Opt Lett ; 48(15): 3921-3924, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527083

RESUMO

This pilot study reports the development of optical coherence tomography (OCT) split-spectrum amplitude-decorrelation optoretinography (SSADOR) that measures spatially resolved photoreceptor response to light stimuli. Using spectrally multiplexed narrowband OCT, SSADOR improves sensitivity to microscopic changes without the need for cellular resolution or optical phase detection. Therefore, a large field of view (up to 3 × 1 mm2 demonstrated) using conventional OCT instrument design can be achieved, paving the way for clinical translation. SSADOR promises a fast, objective, and quantifiable functional biomarker for photoreceptor damage in the macula.


Assuntos
Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Projetos Piloto
12.
Prog Retin Eye Res ; 97: 101206, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37499857

RESUMO

There remain many unanswered questions on how to assess and treat the pathology and complications that arise from diabetic retinopathy (DR). Optical coherence tomography angiography (OCTA) is a novel and non-invasive three-dimensional imaging method that can visualize capillaries in all retinal layers. Numerous studies have confirmed that OCTA can identify early evidence of microvascular changes and provide quantitative assessment of the extent of diseases such as DR and its complications. A number of informative OCTA metrics could be used to assess DR in clinical trials, including measurements of the foveal avascular zone (FAZ; area, acircularity, 3D para-FAZ vessel density), vessel density, extrafoveal avascular zones, and neovascularization. Assessing patients with DR using a full-retinal slab OCTA image can limit segmentation errors and confounding factors such as those related to center-involved diabetic macular edema. Given emerging data suggesting the importance of the peripheral retinal vasculature in assessing and predicting DR progression, wide-field OCTA imaging should also be used. Finally, the use of automated methods and algorithms for OCTA image analysis, such as those that can distinguish between areas of true and false signals, reconstruct images, and produce quantitative metrics, such as FAZ area, will greatly improve the efficiency and standardization of results between studies. Most importantly, clinical trial protocols should account for the relatively high frequency of poor-quality data related to sub-optimal imaging conditions in DR and should incorporate time for assessing OCTA image quality and re-imaging patients where necessary.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos , Vasos Retinianos/patologia
13.
Phys Chem Chem Phys ; 25(25): 16835-16843, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37313685

RESUMO

There exist resonance degeneracy and nesting in the spherical dielectric cavity embedded in an infinite zero-index-material (ZIM). However, its spontaneous emission (SE) has been scarcely studied. Here, we investigate the inhibition and enhancement of SE in spherical dielectric cavities surrounded by ZIMs at the nanoscale. In the cavities embedded in ε-near-zero materials, by adjusting the polarization of the emitter, the SE of the emitter can be controlled from inhibition to enhancement, ranging from 10-2 to dozens. For the cavities embedded in µ-near-zero or ε-µ-near-zero materials, the enhancement of SE is also achieved in a large range of cavities. These findings provide more application possibilities in single-photon sources, deformable optical devices with ZIMs, etc.

14.
Cell Death Dis ; 14(5): 321, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173309

RESUMO

With the expansion of the aging population, age-associated sarcopenia (AAS) has become a severe clinical disease of the elderly and a key challenge for healthy aging. Regrettably, no approved therapies currently exist for treating AAS. In this study, clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were administrated to two classic mouse models (SAMP8 mice and D-galactose-induced aging mice), and their effects on skeletal muscle mass and function were investigated by behavioral tests, immunostaining, and western blotting. Core data results showed that hUC-MSCs significantly restored skeletal muscle strength and performance in both mouse models via mechanisms including raising the expression of crucial extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging. For the first time, the study comprehensively evaluates and demonstrates the preclinical efficacy of clinical-grade hUC-MSCs for AAS in two mouse models, which not only provides a novel model for AAS, but also highlights a promising strategy to improve and treat AAS and other age-associated muscle diseases. This study comprehensively evaluates the preclinical efficacy of clinical-grade hUC-MSCs in treating age-associated sarcopenia (AAS), and demonstrates that hUC-MSCs restore skeletal muscle strength and performance in two AAS mouse models via raising the expression of extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging, which highlights a promising strategy for AAS and other age-associated muscle diseases.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Sarcopenia , Humanos , Camundongos , Animais , Idoso , Diferenciação Celular , Sarcopenia/terapia , Músculo Esquelético , Células-Tronco Mesenquimais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Cordão Umbilical
15.
IEEE Trans Med Imaging ; 42(11): 3219-3228, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37216244

RESUMO

We introduce a new concept of panoramic retinal (panretinal) optical coherence tomography (OCT) imaging system with a 140° field of view (FOV). To achieve this unprecedented FOV, a contact imaging approach was used which enabled faster, more efficient, and quantitative retinal imaging with measurement of axial eye length. The utilization of the handheld panretinal OCT imaging system could allow earlier recognition of peripheral retinal disease and prevent permanent vision loss. In addition, adequate visualization of the peripheral retina has a great potential for better understanding disease mechanisms regarding the periphery. To the best of our knowledge, the panretinal OCT imaging system presented in this manuscript has the widest FOV among all the retina OCT imaging systems and offers significant values in both clinical ophthalmology and basic vision science.


Assuntos
Retina , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem
16.
Biomed Opt Express ; 14(5): 2040-2054, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37206138

RESUMO

Projection artifacts are a significant limitation of optical coherence tomographic angiography (OCTA). Existing techniques to suppress these artifacts are sensitive to image quality, becoming less reliable on low-quality images. In this study, we propose a novel signal attenuation-compensated projection-resolved OCTA (sacPR-OCTA) algorithm. In addition to removing projection artifacts, our method compensates for shadows beneath large vessels. The proposed sacPR-OCTA algorithm improves vascular continuity, reduces the similarity of vascular patterns in different plexuses, and removes more residual artifacts compared to existing methods. In addition, the sacPR-OCTA algorithm better preserves flow signal in choroidal neovascular lesions and shadow-affected areas. Because sacPR-OCTA processes the data along normalized A-lines, it provides a general solution for removing projection artifacts agnostic to the platform.

17.
J Vitreoretin Dis ; 7(3): 226-231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188216

RESUMO

Introduction: To assess the diagnostic accuracy of automatically quantified macular fluid volume (MFV) for treatment-required diabetic macular edema (DME). Methods: This retrospective cross-sectional study included eyes with DME. The commercial software on optical coherence tomography (OCT) produced the central subfield thickness (CST), and a custom deep-learning algorithm automatically segmented the fluid cysts and quantified the MFV from the volumetric scans of an OCT angiography system. Retina specialists treated patients per standard of care based on clinical and OCT findings without access to the MFV. The main outcome measures were the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity of the CST, MFV, and visual acuity (VA) for treatment indication. Results: Of 139 eyes, 39 (28%) were treated for DME during the study period and 101 (72%) were previously treated. The algorithm detected fluid in all eyes; however, only 54 eyes (39%) met the DRCR.net criteria for center-involved ME. The AUROC of MFV predicting a treatment decision of 0.81 was greater than that of CST (0.67) (P = .0048). Untreated eyes that met the optimal threshold for treatment-required DME based on MFV (>0.031 mm3) had better VA than treated eyes (P = .0053). A multivariate logistic regression model showed that MFV (P = .0008) and VA (P = .0061) were significantly associated with a treatment decision, but CST was not. Conclusions: MFV had a higher correlation with the need for treatment for DME than CST and may be especially useful for ongoing management of DME.

18.
Invest Ophthalmol Vis Sci ; 64(4): 17, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37057973

RESUMO

Purpose: To characterize rat retinal responses after optic nerve transection (ONT) by visible-light optical coherence tomography (vis-OCT). Methods: Unilateral ONT was performed in Brown Norway rats (n = 8). In vivo, vis-OCT retinal imaging was performed on the experimental eyes before ONT (baseline), and two days, one week, two weeks, and four weeks (endpoint) after ONT, as well as on fellow eyes at the endpoint. The system was operated at a 70 kHz A-line sampling rate with both raster scans (512 × 2 × 512 A-lines), and circular scans (2048 × 100 A-lines) acquired around the optic disc. Retinal layers were segmented to calculate layer thicknesses and project en face images for visualization and quantifications. Vessel densities and oxygen saturation were used to evaluate the morphologic and functional impact on the retinal vasculature. Results: After ONT, retinal nerve fiber bundles demonstrated significant degeneration, starting at two weeks, with a reduction of thicknesses quantified on the nerve fiber layer, ganglion cell complex, and total retina. Along with that, the activation of macrophage-like cells in the vitreoretinal interface was also observed. Vessel densities for all three retinal plexuses were unaffected over the period of observation. However, oxygen saturation in retinal arteries and veins was significantly reduced at four weeks after ONT. Conclusions: Vis-OCT can provide high-definition, in vivo characterization of retinal responses to ONT in rats. Despite a significant reduction in retinal layer thickness, this was not accompanied by alterations in vascular density. Despite this, oximetry indicates reduced retinal oxygen saturation, suggesting that altered vascular physiology is not reflected in the anatomic appearance of retinal blood vessel density alone.


Assuntos
Traumatismos do Nervo Óptico , Ratos , Animais , Tomografia de Coerência Óptica/métodos , Células Ganglionares da Retina/fisiologia , Retina , Ratos Endogâmicos BN , Luz
19.
Transl Vis Sci Technol ; 12(4): 15, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37058103

RESUMO

Purpose: To diagnose and segment choroidal neovascularization (CNV) in a real-world multicenter clinical OCT angiography (OCTA) data set using deep learning. Methods: A total of 105,66 OCTA scans from 3135 eyes, including 4701 with CNV and 5865 without, were collected in five eye clinics. Both 3 × 3-mm and 6 × 6-mm scans of the central and temporal macula were included. Scans with CNV were collected from multiple diseases, and scans without CNV were collected from both healthy controls and those with multiple diseases. No scans were removed during training or testing due to poor quality. The trained hybrid multitask convolutional neural network outputs a CNV diagnosis and membrane segmentation, respectively. Results: The model demonstrated a highly accurate CNV diagnosis (area under receiver operating characteristic curve = 0.97), achieving a sensitivity of 95% at 95% specificity. The model also correctly segmented CNV lesions (F1 score = 0.78 ± 0.19). Additionally, model performance was comparable on both high-definition 3 × 3-mm scans and low-definition 6 × 6-mm scans. The model did not suffer large performance variations under different diseases. We also show that a subclinical lesion in a patient with neovascular age-related macular degeneration can be monitored over a multiyear time frame using our approach. Conclusions: The proposed method can accurately diagnose and segment CNV in a large real-world clinical data set. Translational Relevance: The algorithm could enable automated CNV screening and quantification in the clinic, which will help improve CNV diagnosis and treatment evaluation.


Assuntos
Neovascularização de Coroide , Aprendizado Profundo , Macula Lutea , Humanos , Angiofluoresceinografia/métodos , Tomografia de Coerência Óptica/métodos , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/tratamento farmacológico
20.
Arterioscler Thromb Vasc Biol ; 43(5): 697-712, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951064

RESUMO

BACKGROUND: The major obstacle for applications of human induced pluripotent stem cells (hiPSCs) is efficient and controlled lineage-specific differentiation. Hence, a deeper understanding of the initial populations of hiPSCs is required to instruct proficient lineage commitment. METHODS: hiPSCs were generated from somatic cells by transduction of 4 human transcription factors (OCT4, SOX2, KLF4, and C-MYC) using Sendai virus vectors. Genome-wide DNA methylation analysis and transcriptional analysis were performed to evaluate the pluripotent capacity and somatic memory state of hiPSCs. Flow cytometric analysis and colony assays were performed to assess the hematopoietic differentiation capacity of hiPSCs. RESULTS: Here, we reveal human umbilical arterial endothelial cell-derived induced pluripotent stem cells (HuA-iPSCs) exhibit indistinguishable pluripotency in comparison with human embryonic stem cells and hiPSCs derived from other tissues of origin (umbilical vein endothelial cells, cord blood, foreskin fibroblasts, and fetal skin fibroblasts). However, HuA-iPSCs retain a transcriptional memory typical of the parental human umbilical cord arterial endothelial cells, together with a strikingly similar DNA methylation signature to umbilical cord blood-derived induced pluripotent stem cells that distinguishes them from other human pluripotent stem cells. Ultimately, HuA-iPSCs are most efficient in targeted differentiation toward hematopoietic lineage among all human pluripotent stem cells based on the functional and quantitative evaluation of both flow cytometric analysis and colony assays. Application of the Rho-kinase activator significantly reduces the effects of preferential hematopoietic differentiation in HuA-iPSCs, reflected in CD34+ cell percentage of day 7, hematopoietic/endothelial-associated gene expression, and even colony-forming unit numbers. CONCLUSIONS: Collectively, our data suggest that somatic cell memory may predispose HuA-iPSCs to differentiate more amenably into hematopoietic fate, bringing us closer to generating hematopoietic cell types in vitro from nonhematopoietic tissue for therapeutic applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular/genética , Cordão Umbilical , Reprogramação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...